
AVF Control Number: AVF-VSR-90502/61

DTIC
ELECTE

%JULO I

(V~~~ A COMPILER-

NVALIDATION SUMMARY REPORT:
N Certificate Number #900125NI.10253

R R Software Inc
IntegrAda 4.2.0

Zenith Z248 under MS-Dos 3.30 Host

Completion of On-Site Testing:
25 January 1990

Prepared By-
Testing Services

The National Computing Centre Limited
Oxford Road

Manchester M1 7ED
England

Prepared For.
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

ValNad Sio y Repo AVF-VSR-9050261

IRSaftwoe [or- INW~Ads 4.2-0 Vollulh3U iQ "Mum~ Page i of Hi

Appned kv~b b

?c0e7 076 ''''
I

JUL 05 '90 14 :18 1 IT R.ESEPRCH _I NST

~A

4LMII3TWmR Ads Compiler -1a t on ury port:2Sot

ware Inc., IntegrAda 4.2-0. Zeith Z248 under MS-DOS 3.30 (Host
& Target), 900125N41.10253

u&AUNM)
National Computing Centre Limited
Manchester, UNITED KINGDOM

'.inmm aawu~ ma~u~s~&J~~WYR
National Computing Centre Limited
Oxford Road AVF-VSR-90502/6 1
Manchester MI 7ED
UNITED KINGDOM

t... -4MCOWO& AGNCV NAAR($) ANDAOS(E) mg . A 1

Ada Joint Program Office .PMIR

United States Department of Defense
Washington, D.C. 20301-3081

ii. WPR.NAW HMTS

9IW O AIXXAULW9V SEEWN Ift OWTJTMN 0=r

Approved for public release; distributiob unlimited,

R. R. soft ware Inc., integrAda 4.2-. Manchester England, Z248 under NS-Dos 3.30 (Host

6Target), ACVC 1.10.

Mu-fl5@TOW~ Ada progrommin language. Ada ComjleT Validation ,s~mA mmmMNo
Summary Report. Ada Compiler Validation CapabilitY. Validation

[Ts:t In Ada Validation Offic*.
Ads Validation Facility.

ANSI/IL- I&A.O

UNCLASSIFIED IUNCLASSIFIED UNCLSSIFIED

Ada Compiler Validation Summary Report:

Compiler Name: IntegrAda 4.2.0

Certificate Number: #900125N1.10253

Host: Zenith Z248 under MS-Dos 3.30

Target: Zenith Z248 under MS-Dos 3.30

Testing Completed 25 January 1990 Using ACVC 1.10

This report has been reviewed and is approved.

Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

Ada Vaidatji Qrganization At.esio.,
+ Dr. John F. Kkamer

Institute for Defense Analyses PIS GRA&I IW
Alexandria VA 22311 bC TAB 13

O.atanounced 0tustirtcation

By-..
______,______Distrlbution/

Ada Joint Program Office AvaiabilSty Codes
Dr. John Solomond o ,
Director AJPO let A ~ speolal
Department of Defense
Washington DC 20301 wI1

Valmiam Siuny Rqmt AVF-VSR-90502161

R R Softm Imnc hu~da 4.2.0 Page ii of ii

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION ... 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 2
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2
CONFIGURATION INFORMATION 1

2.1 CONFIGURATION TESTED 1
2.2 IMPLEMENTATION CHARACTERISTICS 1

CHAPTER 3
TEST INFORMATION .. 1

3.1 TEST RESULTS 1
3.2 SUMMARY OF TEST RESULTS BY CLASS 1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 1
3.4 wrHDRAWN TESTS 1
3.5 INAPPUCABLE TESTS 2

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 6

3.7 ADDITIONAL TESTING INFORMATION 7

APPENDIX A
DECLARATION OF CONFORMANCE 1

APPENDIX B
APPENDIX F OF THE Ada STANDARD 1

APPENDIX C
TEST PARAMETERS .. 1

APPENDIX D
W rI DRAW N TESTS .. 1

Vaimjom summY RpCt AVF-VSR-9O502/61

R R Soalr .. he. lUrAih 4.2* Table of Cootents - Pag i ot i

'I INTRODUCTION

CHAPTER 1

INTRODUCTIONnt dC i

This Validation Summary Report (VSR) describes the extent to which a specific Ada compiler

conforms to the Ada Standard, ANSIIMLSTD-1815A. This report explains all technical terms

Validation Capability,(ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the

AaStandard. The Ada Standard must be implemented in its entirety, and nothing can beimplemented that is not in the Standard.
vnthough all validated Ada compilers conform to the Ada Standard, it must be understood that
soedifferences do exist between implementations. The Ada Standard permits some

implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All the dependencies
observed during the process of testing thiscompiler are £v4T in this report.,

The information in tZhis report is derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results.-\The purpose of validating is to ensure conformity of the
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejec~ illegal language constructs. The testing also identifies
behavior that is implementation dependqeit, but is permitted by the Ada Standard. Six classes of
tests are used. These tests are designd to perform checks at compile time, at link time, and
during execution.

~t

1.1 PURPOSE OF THIS VALIDATION SUCTARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

" To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

" To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed by the Ada
Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Vaidation S pmy Rqstt AVF-VSR-905OZ11

Rt R So ile IeAda 42a omaptai- Page 1 of 5

INTRODUCTION

Organization (AVO). On-site testing was completed 25 January 1990 at The Numerical Algorithms
Group Limited, Wilkinson House, Jordan Hill Road, Oxford, United Kingdom, OX2 8DR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
"Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

OUSDRE
The Pentagon, Rm 313-139 (Fern Street)

Washington DC 20301-3081

or from:

Testing Services
The National Computing Centre Limited

Oxford Road
Manchester M1 7ED

England

Questions regarding this report or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

Alexandria VA 22311

1.3 R~

1. Reference Manual for the Ada Programmine Lanfuae
ANSI/MIL-STD-1815A. February 1983 and ISO 8652-1987.

2. Ada Comtiler Validation Procedures and Guidelines,
Ada Joint Program Office, 1 January 1987.

VaEW= Smmy Repm AVF-VSR-905Z61

R R Sacu im. Ih.pAil 4.2. Chapterl - Page 2 of 5

INTRODUCTION

3. Ada Comiler Validation Capability Implementers' Guide,

SofTech, Inc., December 1986.

4. Ada Corniler Validation Capability User's Guide,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures contained
in the Ada Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process for validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a compiler
is not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

vM Simmy RepM AVF-VM-9030 1

R R Safm ih.. Ip VA 42.0 COapterl - Page 3 of 5

INTRODUCTION

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or
contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E, and L. The first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada programs with certain
language constructs which cannot be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada language) are not treated
as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every syntax or semantic error in the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no
capacity requirements placed on a compiler by the Ada Standard for some parameters -- for
example, the number of identifiers permitted in a compilation or the number of units in a library -
- a compiler may refuse to compile a Class D test and still be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

VauIdam 8in7 Rqiu AVF-VSR-9052A1

R R S tu L. lboAd 4,20 Chapafl - Page 4 of S

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the self-
checking features of the executable tests. The package REPORT provides the mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These tests produce
messages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
are reasonably portable without modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Vagldaom M S Rqmit AVF-VSR-905026I

R R S inwu [.e. IOWqrA& 4.2.0 Cbapterl - Page 5 of 5

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: IntegrAda 42.0

ACVC Version: 1.10

Certificate Number: #900125Nl.10253

Host Computer:

Machine: Zenith 7248

Operating System: Ms-Dos 3.30

Memory Size: 4 Mbytes

Target Computer:

Machine: Zenith Z248

Operating System: Ms-Dos 3.30

Memory Size: 4 Mbytes

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard that permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723 variables in the
same declarative part. (See test D29002K.)

VAmiuma. 3m Repor AVF-VSR-90502161

R R SaBwu fo. k Mik 4..0 Capter 2 - Page I of 5

CONFIGURATION INFORMATION

(2) The compiler correctly processes tests containing loop statements nested to 17
levels. (See tests D55A03A..H (8 tests).)

(3) The compiler rejects tests containing block statements nested to 65 levels. (See test
D56001B.)

(4) The compiler correctly processes tests containing recursive procedures separately
compiled as subunits nested to six levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types LONG-INTEGER,
and LONG-FLOAT, in the package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked
are not defined by the language. While the ACVC tests do not specifically attempt to
determine the order of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record componens are evaluated
before any value is checked for membership in a component's subtype. (See test
C32117A.)

(2) Assignments for subtypes are performed with the same precision as the base type.
(See test C35712B.)

(3) This implementation uses no extra bits for extra precision and uses no extra bits
for extra range. (See test C35903A.)

(4) No exception is raised when an integer literal operand in a comparison or
membership test is outside the range of the base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a fixed-point comparison or

membership test is outside the range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not defined by the
language. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the following:

(1) The method used for rounding to integer is round away from zero. (See tests
C46012A..Z (26 tests).)

Vaidatim S y Repmt AVF-VSR-9050261

R R So am im. atp la 4.2.0 Ciapftr 2 - Page 2 of 5

CONFIGURATION INFORMATION

(2) The method used for rounding to longest integer is round away from zero. (See
tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal real expressions is
round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINT ERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises no exception. (See test C36003A.)

(2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an array type with
INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to an array type with
SYSTEM.MAX INT + 2 components. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
STORAGE-ERROR when the array objects are declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINTERROR when the length of a dimension is
calculated and exceeds INTEGER'LAST. (See test C52104Y.)

(6) In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINT-ERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINT-ERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test C52013A.)

f. A null array with one dimension of length greater than INTEGER'LAST may raise
NUMERIC-ERROR or CONSTRAINT-ERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises no exception. (See test E52103Y.)

g. Discriminated types.

Vadadw S 7 RqN-t AVF-VSR-9052I6I

R R Soatm. I=. leU.Ada 4.2.0 Chapter 2 - Page 3 of 5

CONFIGURATION INFORMATION

(1) In assigning record types with discriminants, the expression is evaluated in its
entirety before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

h. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test results indicate that
the order in which choices are evaluated and index subtype checks are made
depends upon the aggregate itself. (See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all choices are
evaluated before being checked for identical bounds. (See test E43212B.)

(3) CONSTRAINT-ERROR is raised after all choices are evaluated when a bound
in a non-null range of a non-null aggregate does not belong to an index subtype.
(See test E43211B.)

Pragmas.

(1) The pragma INLINE is not supported for functions or procedures. (See tests
LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests).)

j. Generics.

(1) Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

(7) Generic package declarations and bodies can be compiled in separate compilations.
(See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

V&Udsdm S 7 Rqma AVF-VSR-90S02V6

R R Sawm itn. l iepmib 4.2.0 Chiper 2 - Page 4 of 5

CONFIGURATION INFORMATION

(9) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

k. Input and output.

(1) The package SEQUENTIALIO can be instantiated with unconstrained array types
and record types with discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

(3) RESET and DELETE operations are supported for SEQUENTIAL_10. (See tests
CE2102G and CE2102X.)

(4) RESET and DELETE operations are supported for DIRECT_10. (See tests
CE2102K and CE2102Y.)

(5) RESET and DELETE operations are supported for text files. (See tests
CE3102F..G (2 tests), CE3104C, CE3110A, and CE3114A.)

(6) Overwriting to a sequential file does not truncate the file. (See test CE2208B).

(7) Temporary sequential files are given names and not deleted when closed. (See
test CE2108A.)

(8) Temporary direct files are given names and not deleted when closed. (See test
CE2108C.)

(9) Temporary text files are given names and not deleted when closed. (See test
CE3112A.)

(10) Only one internal file can be associated with each external file for sequential files
when reading only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

(11) Only one internal file can be associated with each external file for direct files when
reading only. (See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(12) Only one internal file can be associated with each external file for text files when
reading only. (See tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

VAdWia S Raat AVF.VSR-052*1

R R SaoItwa . l elAd. 42A alpxer 2 - Page S of 5

TEST INFORMATION

CHAPTER 3

TEST INFTRMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had
been withdrawn because of test errors. The AVF determined that 405 tests were inapplicable to
this implementation. All inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 39 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 128 1131 1933 10 22 44 3268

Inapplicable 1 7 382 7 6 2 405

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPrER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 576 544 240 170 99 160 331 131 36 252 252 279 3268

Inapp 14 73 136 8 2 0 6 1 6 0 0 117 42 405

Withdrawn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

AWrrHDRAWN TE

Vaunif SinY IAd AVF-VSR-90502SM

R R Soafie ha Imerda 4.2.0 Chapter 3 - Pae I or 9

TEST INFORMATION

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A..D CD2A66A..D CD2A73A..D CD2A76A..D CD2A81G CD2A83G
CD2A84N&M CD50110 CD2B15C CD7205C CD2D1lB CD5007B
ED7004B ED7005C&D ED7006C&D CD7105A CD7203B CD7204B
CD7205D CE21071 CE3111C CE3301A CE3411B

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
required by the Ada Standard to support. Others may depend on the result of another test that
is either inapplicable or withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this validation attempt, 405 tests were
inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) CA5321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L.Y (14 tests) C46012L..Z (15 tests)

b. C35702A and B86001T are not applicable because this implementation supports no
predefined type SHORT-FLOAT.

c. The following 30 tests are inapplicable because this implementation does not support
'STORAGE-SIZE representation clauses for access types

A39005C C87B62B CD1009J
CD1009R..S (2 tests) CD1C03C CD2A83A..C (3 tests)
CD2AB3E..F(2 tests) CD2A84B..I (8 tests) CD2A84K..L (2 tests)
ED2A86A CD2B1lB..G (6 tests) CD2B15B
CD2B16A

d. The following 16 tests are not applicable because this implementation does not support a
predefined type SHORT INTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55B09D B86001V

Vdua I I Ras.xt ANSR-30e2M19

R R bum lideraaAdo 420 Czapter 3 - Page 2 of 9

TEST INFORMATION

CD7101E

e. C45531M..P (4 tests) and C45532M..P (4 tests) are inapplicable because the size of a
mantissa of a fixed point type is limited to 31 bits.

f. D55A03E..H (4 tests) use 31 or more levels of loop nesting which exceeds the capacity of

the compiler.

g. D56001B uses 65 levels of block nesting which exceeds the capacity of the compiler.

h. D64005F..G (2 tests) are not applicable because this implementation does not support
nesting 10 levels of recursive procedure calls.

1. B86001X, C45231D, and CD7101G are not applicable because this implementation does
not support any predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER.

j. B86001Y is not applicable because this implementation supports no predefined fixed-point
type other than DURATION.

k. B86001Z is not applicable because this implementation supports no predefined floating-
point type with a name other than FLOAT, LONGFLOAT, or SHORT-FLOAT.

1. C96005B is not applicable because there are no values of type DURATION'BASE that are
outside the range of DURATION.

m. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not applicable
because this implementation does not support pragma INLINE.

m. The following 16 tests are not applicable because this implementation does not support
'SIZE representation clauses for floating-point types.

CD1009C CD2A41A..E (5 tests) CD2A42A..J (10 tests)

o. The following 25 tests are inapplicable because 'SIZE representation clauses for array types
are not supported.

CD1009E..F (2 tests) CD2A61A..L (12 tests)CD2A62A..C (3 tests)
CD2A64A..D (4 tests) CD2A65A..D (4 tests)

p. The following 17 tests are not applicable because 'SIZE representation clauses for record
types are not supported.

CD1009G CD2A71A..D (4 tests) CD2A72A..D (4 tests)
CD2A74A..D (4 tests) CD2A75A..D (4 tests)

Vanl i m l RMt * AF" SR-9052o1

R R Saotu Jan WW~ds 4.2.0 ChnpKW 3 - Page 3 of 9

TEST INFORMATION

q. CD1009H is not applicable for this implementation because 'SIZE representation clauses
for private types are not supported.

r. CD1009I is not applicable for this implementation because 'SIZE representation clauses for
limited private types are not supported.

s. The following 14 are inapplicable because this implementation does not support record
representation clauses

CD1009N CD1009X..Z (3 tests) CDIC03H
CD1C04E ED1D04A CD4031A
CD4041A CD4051A..D (4 tests) CD7204C

t. CD2A81A..F (6 tests) and CD2A87A are not applicable because 'SIZE representation
clauses for access types are not supported.

u. CD2A91A..E (5 tests) and CD2A95A are not applicable because 'SIZE representation
clauses for task types are not supported.

v. CE2102D is inapplicable because this implementation supports CREATE with IN-FILE
mode for SEQUENTIALIO.

w. CE2102E is inapplicable because this implementation supports CREATE with OUTFILE
mode for SEQUENTIALIO.

x. CE2102F is inapplicable because this implementation supports CREATE with INOUT-FILE
mode for DIRECT IO.

y. CE2102I is inapplicable because this implementation supports CREATE with IN-FILE
mode for DIRECT10.

z. CE2102J is inapplicable because this implementation supports CREATE with OUTFILE
mode for DIRECT_10.

aa. CE2102N is inapplicable because this implementation supports OPEN with IN-FILE mode
for SEQUENTIAL10.

ab. CE21020 is inapplicable because this implementation supports RESET with INFILE mode
for SEQUENTIAL_10.

ac. CE2102P is inapplicable because this implementation supports OPEN with OUTFILE
mode for SEQUENTIALIO.

ad. CE2102Q is inapplicable because this implementation supports RESET with OUTFILE
mode for SEQUENTIAL10.

ae. CE2102R is inapplicable because this implementation supports OPEN with INOUTFILE
mode for DIRECT 10.

vaaaam Swmy Raept AVF-VSR-90OZ'l

R R Saft ha. hsAtwdl 4.20 Capkr 3 - Pag 4 of 9

TEST INFORMATION

af. CE2102S is inapplicable because this implementation supports RESET with INOUTFILE
mode for DIRECT 10.

ag. CE2102T is inapplicable because this implementation supports OPEN with INFILE mode
for DIRECT_10.

ah. CE2102U is inapplicable because this implementation supports RESET with IN-FILE mode
for DIRECT_10.

ai. CE2102V is inapplicable because this implementation supports OPEN with OUTFILE
mode for DIRECT 10.

aj. CE2102W is inapplicable because this implementation supports RESET with OUTFILE
mode for DIRECT_10.

ak. CE2107A..E (5 tests), CE2107L, CE2110B, and CE2111D are not applicable because
multiple internal files cannot be associated with the same external file for sequential files.
The proper exception is raised when multiple access is attempted.

al. CE2107F..H (3 tests), CE2110D, and CE2111H are not applicable because multiple internal
files cannot be associated with the same external file for direct files. The proper exception
is raised when multiple access is attempted.

am. EE2201D and EE2401D are inapplicable because this implementation does not support
sequential and direct 1/0 for unconstrained array types.

an. CE3102E is inapplicable because text file CREATE with IN-FILE mode is supported by
this implementation.

ao. CE3102F is inapplicable because text file RESET is supported by this implementation.

ap. CE3102G is inapplicable because text file deletion of an external file is supported by this
implementation.

aq. CE31021 is inapplicable because text file CREATE with OUT FILE mode is supported by
this implementation.

ar. CE3102J is inapplicable because text file OPEN with INFILE mode is supported by this
implementation.

as. CE3102K is inapplicable because text file OPEN with OUTFILE mode is not supported
by this implementation.

at. CE3111A..B (2 tests), CE3111D..E (2 tests) CE3114B, and CE3115A are not applicable
because multiple internal files cannot be associated with the same external file for text files.
The proper eaception is raised when multiple access is attempted.

Valhdid. -- Repmt AVF.VSR-9030241

R R Saft rw . omapAds 4.2.0 iaptw 3 - Pap S of 9

TEST INFORMATION

3.6 TEST. PROCESSING. AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behaviour. Modifications are made by the AVF in
cases where legitimate implementation behaviour prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected;
and confirming that messages produced by an executable test demonstrate conforming behaviour
that was not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 39 tests.

The following tests were split because syntax errors at one point resulted in the compiler not
detecting other errors in the test:

B22003A B24007A B24009A B25002A B26005A
B27005A B29001A B37106A B49003A B49005A
B51001A B52003A B55AO1A B63001A B63001B
B91001H BAll01A BAll01C BAll01E BA3006A
BA3006B BA3007B BA3008A BA3008B BA3013A
BC2001D BC2001E BC3005B

The following tests were passed as a result of modification of code and/or evaluation criteria as
follows:

C34006D This test checks that a derived type inherits various properties from the parent; the
'SIZE attribute is used in this test under assumptions that are not fully supported
by the Ada standard, and are subject to ARG review. The test outputs
"INCORRECT OBJECT 'SIZE" on execution.

C39005A "PRAGMA ELABORATE (REPORT);" is needed between lines 17 and 18 to

prevent "TEST" from raising PROGRAM-ERROR.

CE2108A..B (2 tests) CE2108C..D (2 tests) CE3112A..B (2 tests)

These tests have been modified by commenting out the lines in the second test of
each of these three pairs that create a temporary file. The lines commented out
were 45..64 in CE2108B, 45..64 in CE2108D and 40..48 in CE3112B. This ensures
that a NEW temporary file is not generated with the same name as that generated
in the 1st test.

CC1223A The expression "2**TMANTISSA-I" on line 262 was changed to an equivalent form
"(20*(T'MANTISSA-1)-1+2**(T'MANTISSA-1))" in order to avoid generating the
exception-raising value 2"*31. On execution the test outputs the message

VNW= 3MMY RqCaI AVF-VSR-9 5O02*

R R Sat he. h e ftlA 4.2A Cmpter 3 - Page 6 of 9

TEST INFORMATION

"INCORRECT VALUE FOR <STR-type>'AFT", generated by the generic check
lines 256ff.

CD2C11A..B (2 tests)

These tests have been modified to include initialisation of W (in its declaration,
lines 41 and 44 respectively) to avoid PROGRAM-ERROR being raised when
procedure Test-Task is called, with W as an actual parameter.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the IntegrAda 4.2.0
compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of the IntegrAda 420 using ACVC Version 1.10 was conducted on-site by a validation
team from the AVF. The configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host computer . Zenith Z248
Host operating system MS-Dos 3.30
Target computer Zenith Z248
Target operating system : Ms-Dos 3.30
Compiler IntegrAda 4.2.0
Pre-linker None
Linker : IntegrAda 420
Loader/Downloader : None
Runtime System : IntegrAda 420

A set of floppy diskettes containing all tests except for withdrawn tests and tests requiring
unsupported floating-point precisions was taken on-site by the validation team for processing. Tests
that make use of implementation-specific values were customized before being written to the
floppy diskettes. Tests requiring modifications during the prevalidation testing were not included
in their modified form on the floppy diskettes.

The contents of the floppy diskettes were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled and all executable tests
were run on the Zenith Z248. Results were printed from the host computer.

vaofim 3in- Repm AVF-VSR-902.,1

R R Safu Kmm. hVAds 42# Oapler 3 - Page 7 of 9

TEST INFORMATION

The compiler was tested using command scripts provided by R R Software Inc and reviewed by the
validation team. The compiler was tested using all default option settings except for the following:

OPTION EFFECT

/Q Quiet error messages - suppresses user prompting on errors. Necessary for running
B-Tests; otherwise every error would have to be responded to.

/W Warnings off - warnings were suppressed mainly because of the many confusing
warnings the validation tests produce. Many validation tests have intentional errors
(such as an expression which always raises an exception, use of null ranges,
unreachable code, etc. The large volume of warnings produced made it difficult to
grade the B-Tests in particular, so they were suppressed.

rr Trimming code on - this directs the compiler to generate code which allows the
linker to trim unused subprograms. This is necessary in order to have a few large
tests be small enough to run.

/D Debugging code off - this directs the compiler to not generate any debugging code
(generally line numbers and walkbacks). This was also used to cut the space used
by the tests.

/BS Brief Statistics. This was also used to cut the amount of output produced by the

compiler during compile time.

Then, all of the non-B-Tests were linked with the options:

/Q Quiet error messages - suppresses user prompting on errors. Necessary for running
L-Tests; otherwise every error would have to be responded to.

/T Trim unused code - this option directs the linker to remove unused subroutines
from the result file. This can make as much as a 30K space saving in the result
file.

/B Brief Statistics. This was also used to cut the amount of output produced by the
Linker during compile time.

Tests were compiled, linked, and executed (as appropriate) using a single compuer. Test output,
compilation listings, and job logs were captured on floppy diskettes and archived at the AVF. The
listings examined on-site by the validation team were also archived.

3.7...I Test Site

VuMi= mm7 Rqwt AVF-VSR-905O2161

R R Sof th. m hrA* 420 Champtr 3 - Page 8 of 9

TEST INFORMATION

Tcsting was conducted at The Numerical Algorithms Group Limited, Wilkinson House, Jordan Hill
Road, Oxford, United Kingdom, OX2 8DR and was completed on 25 January 1990.

Vauhdain 8Y Rapwd AVF-VSR9052161

R R Shftme marAds 4.20 amptr 3 -Pa 9 of 9

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

R.R. Software, Inc has submitted the following Declaration of Conformance
concerning the IntegrAda 4.2.0 compiler.

VaUdaion Somme7 Ropel AVF.VSR.90650216

3.3 SoftwM Inc lnhgrAda 4.20 Appendix A - Pap 1 of3

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: R.R. Software, Inc

Ada Validation Facility: The National Computing Centre Limited,
Oxford Road,
Manchester,
MI 7ED.
United Kingdom

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Confleuration

Base Compiler Name: IntegrAda 4.2.0

Host Architecture: Zenith Z248
Host OS and Version: Ms-Dos 3.30

Target Architecture: Same as Host
Target OS and Version: Same as Host

Implementor's Declaration

I, the undersigned, representing R.R. Software, Inc have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed
in this declaration. ! declare that AETECH, Inc is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's corporate name.

Date:

a16mes A. kw
Vice President,
R.R. Software, Inc

Vaudatiou SumUmr Repor AVF.VSR.9050261

IL Software, Inc IntqrAda 4.2.0 Appendix A. Pap 2 of 3

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing AETECII, Inc, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure
of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ILIATD-1815A.

____ ____ ____Date:

James Thomes
President,
AETECII, Inc

Valdation Sunurm" Report AVF-VSR-90S02/61

R.R. Softwu Inc IntAgAda 4.2.0 Appendix A - Poe 3of 3

mm~mm mm m m mmmm 'dt 88 m |

APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the IntegrAda 4.2.0 compiler, as described in this Appendix, are provided by R
R Software, Inc, Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768..32767;
type LONGINTEGER is range -2147483648..2147483647
type FLOAT is digits 6 range -((2.0**128) - (2.0**104))..

-((2.0"128) - (2.0**104));
type LONGFLOAT is digits 15 range-((2.0**1024) - (2.0**971)

-((2.0"'1024) - (2.0**971));
type DURATION is delta 0.00025 range -((2.0**31) - 1)/4096.0..

((2.0**31) - 1)/4096.0;

end STANDARD;

vWNW=ummy Rqlan AVF-VSR-9050,61

SRR -ft - lw 4.0 Appe nf B

Appendix F: Implementation Dependencies

F Implementation Dependencies

This appendix specifies certain system-dependent characteristics of the IntegrAda, version 4.2.0
80x86 DOS Compiler.

F.1 Implementation Dependent Pragmas

In addition to the required Ada pragnias, IntegrAda also provides several others. Some of these
pragrnas have a texml range. Such pragmas set some value of importance to the compiler, usually
a flag that may be On or Off. The value to be used by the compiler at a given point in a program
depends on the parameter of the most recent relevant pragma in the text of the program. For flags,
if the parameter is the identifier On, then the flag is on; if the parameter is the identifier Off, then
the flag is off; if no such pragma has occurred, then a default value is used.

The range of a pragma - even a pragma that usually has a textual range - may vary if the pragma
is not inside a compilation unit. This matters only if you put multiple compilation units in a file.
The following rules apply:

1) If a pragma is inside a compilation unit, it affects only that unit.
2) If a pragma is outside a compilation unit, it affects all following compilation units

in the compilation.

Certain required Ada pragmas, such as INLINE, would follow different rules; however, as it turns
out, IntegrAda ignores all pragmas that would follow different rules.

The following system-dependent pragmas are defined by IntegrAda. Unless
othe.rwise stated, they may occur anywhere that a pragma may occur.

ALL-CHECKS Takes one of two identifiers On or Off as its argument, and has a textual
range. If the argument is Off, then this pragma causes suppression of
arithmetic checking (like pragma AP.ITHCHECK - see below), range
checking (like pragniR RANGECHECK - see below), storage error checking,
and elaboration checking. If the argument is On, then these checks are all
performed as usual. Note that pragma ALL CHECKS does not affect the
status of the DEBUG pragma; for the fastest run time code (and the worst
run time checking), both ALL CHECKS and DEBUG should be turned Off
and the pragma OPTIMIZE (Time) should be used. Note also that
ALL CHECKS does not affect the status of the ENUMTAB pragma.
Combining check suppression using the pragma ALLCHECKS and using
the pragma SUPPRESS may cause unexpected results; it should not be
done. However, ALL CHECKS may be combined with the IntegrAda
pragmas ARITHCHECK and RANGECHECK; whichever relevant pragma
has occurred most recently will determine whether a given check is
performed. ALL CHECKS is on by default. Turning any checks off may
cause unpredictable results if execution would have caused the corresponding
assumption to be violated. Checks should be off only in fully debugged and
tested programs. After checks are turned off, full testing should again be

F-I

Copyright 1989, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

done, since any program that handles an exception may expect results that
will not occur if no checking is done.

ARITHCHECK Takes one of the two identifiers On or Off as its argument, and has a
textual range. Where ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for situations where it is permitted
to raise NUMERIC-ERROR; these checks include overflow checking and
checking for division by zero. Combining check suppression using the
pragma ARITHCHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done. However, ARITHCHECK may
be combined with the IntegrAda pragma ALLCHECKS; whichever pragma
has occurred most recently will be effective. ARITHCHECK is on by
default. Turning any checks off may cause unpredictable results if execution
would have caused the corresponding assumption to be violated. Checks
should be off only in fully debugged and tested programs. After checks are
turned off, full testing should again be done, since any program that handles
an exception may expect results that will not occur if no checking is done.

CLEANUP Takes an integer literal in the range 0..3 as its argument, and has a textual
range. Using this pragma allows the IntegrAda run-time system to be less
than meticulous about recovering temporary memory space it uses. This
pragma can allow for smaller and faster code, but can be dangerous; certain
constructs can cause memory to be used up very quickly. The smaller the
parameter, the more danger is permitted. A value of 3 -the default value-
causes the run-time system to be its usual immaculate self. A value of 0
causes no reclamation of temporary space. Values of 1 and 2 allow
compromising between "cleanliness" and speed. Using values other than 3
adds some risk of your program running out of memory, especially in loops
which contain certain constructs.

DEBUG Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls -he generation of line number code and
procedure name code. When DEBUG is on, such code is generated. When
DEBUG is off, no line number code or procedure names are generated.
This information is used by the walkback which is generated after a run-
time error (e.g., an unhandled exception). The walkback is still generated
when DEBUG is off, but the line numbers will be incorrect, and no
subprogram names will be printed. DEBUG's initial state can be set by the
command line; if no explicit option is given, then DEBUG is initially on.
Turning DEBUG off saves space, but causes the loss of much of IntegrAda's
power in describing run time errors.

Notes:
DEBUG should only be turned off when the program has no errors. The
information provided on an error when DEBUG is off is not very useful.

If DEBUG is on at the beginning of a subprogram or package specification,
then it must be on at the end of the specification. Conversely, if DEBUG
is off at the beginning of such a specification, it must be off at the end. If
you want DEBUG to be off for an entire compilation, then you can either

F-2

Copyright 1989, R.R. Software, lne. Revision 4.6

Appendix F: Implementation Dependencies

put a DEBUG pragma in the context clause of the compilation or you can
use the appropriate compiler option.

ENUMTAB Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of enumeration tables.
Enumeration tables are used for the attributes IMAGE, VALUE, and
WIDTH, and hence to input and output enumeration values. The tables are
generated when ENUMTAB is on. The state of the ENUMTAB flag is
significant only at enumeration type definitions. If this pragma is used to
prevent generation of a type's enumeration tables, then using the three
mentioned attributes causes an erroneous program, with unpredictable
results; furthermore, the type should not be used as a generic actual discrete
type, and in particular TEXTIO.ENUMERATION_10 should not be
instantiated for the type. If the enumeration type is not needed for any of
these purposes, the tables, which use a lot of space, are unnecessary.
ENUMTAB is on by default.

PAGELENGTH This pragma takes a single integer literal as its argument. It says that a page
break should be added to the listing after each occurrence of the given
number of lines. The default page length is 32000, so that no page breaks
are generated for most programs. Each page starts with a header that looks
like the following:

IntegrAda Version 4.2.0 compiling file on date at time

RANGECHECK Takes one of the two identifiers On or Off as its argument, and has a
textual range. Where RANGECHECK is off, the compiler is permitted to
(and generally does) not generate checks for situations where it is expected
to raise CONSTRAINT-ERROR; these checks include null pointer
checking, discriminant checking, index checking, array length checking, and
range checking. Combining check suppression using the pragma
RANGECHECK and using the pragma SUPPRESS may cause unexpected
results; it should not be done. However, RANGECHECK may be combined
with the IntegrAda pragma ALL-CHECKS; whichever pragma has occurred
most recently will be effective. RANGECHECK is on by default. Turning
any checks otf may cause unpredictable results if execution would have
caused the corresponding assumption to be violated. Checks should be off
only in fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an exception
may expect results that will not occur if no checking is done.

SYSLIB This pragma tells the compiler that the current unit is one of the standard
IntegrAda system libraries. It takes as a parameter an integer literal in the
range 1 .. 15; only the values 1 through 4 are currently used. For example,
system library number 2 provides floating point support. Do not use this
pragma unless you are writing a package to replace one of the standard
IntegrAda system libraries.

VERBOSE Takes On or Off as its argument, and has a textual range. VERBOSE
controls the amount of output on an error. If VERBOSE is on, the two

F-3

Copyright 1989, R.R. Software, Inc. Revision 4.6

Appendix F Implementation Dependencies

lines preceding the error are printed, with an arrow pointing at the error.
If VERBOSE is off, only the line number is printed.

VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

VERBOSE(On):

15: if X = 10 then
16: Z := 10;

-------------- A
ERROR Identifier is not defined

The reason for this option is that an error message with VERBOSE on can
take a long time to be generated, especially in a large program. VERBOSE's
initial condition can be set by the compiler command line.

Several required Ada pragmas may have surprising effects in IntegrAda. The PRIORITY pragma
may only take the value 0, since that is the only value in the range System.Priority. Specifying any
OPTIMIZE pragma turns on optimization; otherwise, optimization is only done if specified on the
compiler's command line. The SUPPRESS pragma is ignored unless it only has one parameter.
Also, the following pragmas are always ignored: CONTROLLED, INLINE, MEMORY SIZE,
PACK. SHARED, STORAGE UNIT, and SYSTEM-NAME. Pragma CONTROLLED is always
ignored because IntegrAda does no automatic garbage collection; thus, the effect of pragma
CONTROLLED already applies to all access types. Pragma SHARED is similarly ignored:
IntegrAda's non-preemptive task scheduling gives the appropriate effect to all variables. The
pragmas INLINE, PACK, and SUPPRESS (with two parameters) all provide recommendations to
the compiler; as Ada allows, the recommendations are ignored. The pragmas MEMORY SIZE,
STORAGEUNIT, and SYSTEM-NAME all attempt to make changes to constants in the System
package; in each case, IntegrAda allows only one value, so that the pragma is ignored.

F.2 Implementation Dependent Attributes

IntegrAda does not provide any attributes other than the required Ada attributes.

F.3 Specification of the Package SYSTEM

The package System for IntegrAda has the following definition.

package System is

-- System package for IntegrAda

-- Types to define type Address.
type Word is range 0 .. 65536;
for Word'Size use 16;
type Offset-Type is new Word;
type Address is record

F-4

Copyright 1989. R.R. Software, Inc. Reviion 4.6

Appendix F: Implementation Dependencies

Offset : Offset Type;
Segment : Word;

end record;
Function 1+"1 (Left Address; Right : Offset-Type) Return

Address;
Function 1+"1 (Left : OffsetType; Right : Address) Return

Address;
Function "-" (Left : Address; Right : OffsetType) Return

Address;
Function "-" (Left, Right : Address) Return Offset Type;

type Name is (MSDOS2);

SystemName : constant Name := MSDOS2;

Storage Unit : constant := 8;
MemorySize : constant := 65536;

-- Note: The actual memory size of a program is
-- determined dynamically; this is the maximum number
-- of bytes in the data segment.

-- System Dependent Named Numbers:
Min Int : constant := -2 147 483 648;
Max-Int : constant := 2-147483647;
Max-Digits : constant :=-15; -
Max Mantissa : constant := 31;
Fine Delta : constant := 2#1.0#E-31;

-- equivalently, 4.656612873077392578125E-10
Tick : constant := 0.01; -- Some machines have less

-- accuracy; for example, the IBM PC actually ticks
-- about every 0.06 seconds.

-- Other System Dependent Declarations
subtype Priority is Integer range 0..0;

type Byte is range 0 .. 255;
for Byte'Size use 8;

end System;

The type Byte in the System package corresponds to the 8-bit machine byte. The type Word is a
16-bit Unsigned Integer type, corresponding to a machine word.

F.4 Restrictions on Representation Clauses

If T is a discrete type, or a fixed point type, then the size expression can give any value between
I and 1000 bits (subject, of course, to allowing enough bits for every possible value). For other
types, the expression must give the default size for T.

A length clause that specifies T'STORAGESIZE for an access type is not supported; IntegrAda
uses a single large common heap.

F-5

Copyright 1969, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

A length clause that specifies T'STORAGE SIZE for a task type T is supported. Any integer
value can be specified. Values smaller than 256 will be rounded up to 256 (the minimum
T'StorageSize), as the Ada standard does not allow raising an exception in this case.

A length clause that specifies T'SMALL for a fixed point type must give a value (subject to the

Ada restrictions) in the range

2.0 ** (-99) .. 2.0 ** 99,

inclusive.

An enumeration representation clause for a type T may give any integer values within the range
System.Min lnt .. System.MaxInt. If a size length clause is not given for the type, the type's size
is determined from the literals given. (If all of the literals fit in a byte, then Byte'Size is used;
similarly for Integer and Long_Integer).

The expression in an alignment clause in a record representation clause must equal 1.

A component clause must give a storage place that is equivalent to the default value of the
POSITION attribute for such a component.

A component clause must give a range that starts at zero and extends to one less than the size of
the component.

IntegrAda supports address clauses on most objects. Address clauses are not allowed on parameters,
generic formal parameters, and renamed objects. The address given for an object address clause
may be any legal value of type System.Address. It will be interpreted as an absolute machine
address, using the segment part as a selector if in the protected mode. It is the user's responsibility
to ensure that the value given makes sense (i.e., points at memory, does not overlay other objects,
etc.) No other address clauses are supported.

F.5 Implementation Defined Names

IntegrAda uses no implementation generated names.

F.6 Address Clause Expressions

The address given for an object address clause may be any legal value of type System.Address. It
will be interpreted as an absolute machine address, using the segment part as a selector if in the
protected mode. It is the user's responsibility to ensure that the value given makes sense (i.e.,
points at memory, does not overlay other objects, etc.)

F.7 Unchecked Conversion Restrictions

We first make the following definitions:

A type or subtype is said to be a simple type or a simple subtype (respectively) if it is a scalar
(sub)type, an access (sub)type, a task (sub)type, or if it satisfies the following two conditions:

F-6

Copy'alht 1989. R.R. Softwsm Inc. Revtion 4.6

Appendix F: Implementation Dependencies

1) If it is an array type or subtype, then it is constrained and its index constraint is
static; and

2) If it is a composite type or subtype, then all of its subcomponents have a simple
subtype.

A (sub)type which does not meet these conditions is called non-simple. Discriminated records can
bc simple; variant records can be simple. However, constraints which depend on discriminants are
non-simple (because they are non-static).

[ntegrAda imposes the following restriction on instantiations of UncheckedConversion: for such
an instantiation to be legal, both the source actual subtype and the target actual subtype must be
simple subtypes, and they must have the same size.

F.8 Implementation Dependencies of I/O

The syntax of an external file name depends on the operating system being used. Some external
iles do not really specify disk files; these are called devices. Devices are specified by special file
names, and are treated specially by some of the I/O routines.

The syntax of an MS-DOS 2.xx or 3.xx filename is:

Ed:] [path]filaname[.ext]

where "d:" is an optional disk name; "path" is an optional path consisting of directory
names, each followed by a backslash; "filename" is the filename (maximum 8 characters);
and ".ext" is the extension (or file type). See your MS-DOS manual for a complete
description. In addition, the following special device names are recognized:

STI: MS-DOS standard input. The same as StandardInput. Input is buffered by lines,
and all MS-DOS line editing characters may be used. Can only be read.

STO: MS-DOS standard output. The same as Standard Output. Can only be written.
ERR: MS-DOS standard error. The output to this device cannot be redirected. Can only

be written.
CON: The console device. Single character input with echoing. Due to the design of MS-

DOS, this device can be redirected. Can be read and written.
AUX The auxiliary device. Can be read or written.
LST: The list (printer) device. Can only be written.
KBD: The console input device. No character interpretation is performed, and there is

no character echo. Again, the input to this device can be redirected, so it does not
always refer to the physical keyboard.

The MS-DOS device files may also be used (CON, AUX, and PRN without colons ':'). For
compatibility reasons, we do not recommend the use of these names.

The MS-DOS 2.= version of the I/O system will do a search of the default search path (set
by the DOS PATH command) if the following conditions are met:

1) No disk name or path is present in the file name; and

F-7

Copyrfiht 199, R.R. Softar, Inc. Revilon 4.6

Appendix F: Implementation Dependencies

2) The name is not that of a device.

Alternatively, you may think of the search being done if the file name does not contain any
of the characters ':', 'T, or 'T.

The default search path cannot be changed while the program is running, as the path is
copied by the IntegrAda program when it starts running.

Note:
Creates will never cause a path search as they must work in the current directory.

Upon normal completion of a program, any open external files are closed. Nevertheless, to provide
portability, we recommend explicitly closing any files that are used.

Sharing external files between multiple file objects causes the corresponding external file to be
opened multiple times by the operating system. The effects of this are defined by your operating
system. This external file sharing is only allowed if all internal files associated with a single
external file are opened only for reading (mode In-File), and no internal file is Created.
UseError is raised if these requirements are violated. A Reset to a writing mode of a file already
opened for reading also raise UseError if the external file also is shared by another internal file.

Binary 1/0 of values of access types will give meaningless results and should not be done. Binary
I/O of types which are not simple types (see definition in Section F.7, above) will raise UseError
when the file is opened. Such types require specification of the block size in the form, a capability
which is not yet supported.

The form parameter for SequentialIO and DirectIO is always expected to be the null string.

rh-c type Count in the generic package Direct_10 is defined to have the range 0 .. 2147483647.

Ada specifies the existence of special markers called terminators in a text file. IntegrAda defines
the line terminator to be <LF> (line feed), with or without an additional <CR> (carriage return).
The page terminator is the <FF> (form feed) character; if it is not preceded by a <LF>, a line
tcrminator is also assumed.

The file terminator is the end-of-file returned by the host operating system. If no line and/or page
terminator directly precedes the file terminator, they are assumed. If the form "Z" is used, the
<Ctrl>-Z character also represents the end-of-file. This form is not necessary to correctly read files
produced with IntegrAda and most other programs, but may be occasionally necessary. The only
lcgal forms for text files are "" (the null string) and "Z". All other forms raise USEERROR.

If the form is "", the <Ctrl>-Z character is ignored on input. The <CR> character is always
ignored on input. (They will not be returned by Get, for instance). All other control characters are
sent directly to the user. Output of control characters does not affect the layout that Text_1O
generates. In particular, output of a <LF> before a New-Page does not suppress the New Line
caused by the New-Page.

On output, the "Z" form causes the end-of-file to be marked by a <Ctrl>-Z; otherwise, no explicit
end-of-file character is used. The character pair <CR> <LF> is written to represent the line
terminator. Because <CR> is ignored on input, this is compatible with input.

F-8

Copyright 1969, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

The type TextIO.Count has the range 0 .. 32767; the type TextIO.Field also has the range 0
32767.

lOExceptions.USEERROR is raised if something cannot be done because of the external file
system; such situations arise when one attempts:

- to create or open an external file for writing when the external file is already open
(via a different internal file).

- to create or open an external file when the external file is already open for writing
(via a different internal file).

- to reset a file to a writing mode when the external file is already open (via a
different internal file).

- to write to a full disk (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open, Create);
- to open a device with an illegal mode;
- to create, reset, or delete a device;
- to create a file where a protected file (i.e., a directory or read-only file) already

exists;
- to delete a protected file;
- to use an illegal form (Open, Create); or
- to open a file for a non-simple type without specifying the block size;
- to open a device for direct I/O.

IOExceptions.DEVICEERROR is raised if a hardware error other than those covered by
USEERROR occurs. These situations should never occur, but may on rare occasions. For
example, DEVICE-ERROR is raised when:

- a file is not found in a Close or a Delete;
- a seek error occurs on a direct Read or Write; or
- a seek error occurs on a sequential EndOfFile.

The subtypes Standard.Positive and Standard.Natural, used by some I/O routines, have the
maximum value 32767.

No package LowLevelIjO is provided.

F.9 Running the compiler and linker

The IntegrAda compiler is invoked using the following format:

Compile [d:] filename [.ext] (/option)

where filename is an MS/DOS file name with optional disk name [d:], optional extension [.ext], and
compiler options {/option}. If no disk name is specified, the current disk is assumed. If no
extension is specified, .PKG is assumed.

The compiler options are:

F-9

Copyright 1989. R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

B Brief error messages. The line in error is not printed (equivalent to turning off pragma
VERBOSE).

BS Brief statistics. Few compiler statistics are printed.
D Don't generate debugging code (equivalent to turning off pragma DEBUG)
F Use in-line 8087 instructions for Floating point operations. By default the compiler

generates library calls for floating point operations. The 8087 may be used to execute the
library calls. A floating point support library is still required, even though this option is
used.

L Create a listing file with name filename.PRN on the same disk as filename. The listing file
will be a listing of only the last compilation unit in a file.

Ld Create a listing file on specified disk 'd'. Choices are 'A' through 'W'.
Ox Object code memory model. X is 0 or 1. Memory model 0 creates faster, smaller code, but

limits all code in all units of a program to one MS-DOS segment (i.e., 64 kilobytes);
Memory model 1 allows code size limited only by your machine and operating system. See
the linker (Bind) manual for more information. Memory model 0 is assumed if this option
is not given. The compiler records the memory model for which each library unit was
compiled, and it will complain if any mismatches occur. Thus, the compiler enforces that
if it is run using the /61 option, then all of the withed units must have been compiled with
the same option.

Q Quiet error messages. This option causes the compiler not to wait for the user to interact
after an error. In the usual mode, the compiler will prompt the user after each error to
ask if the compilation should be aborted. This option is useful if the user wants to take a
coffee break while the compiler is working, since all user prompts are suppressed. The
errors (if any) will not stay .i .e screen when this option is used; therefore, the console
traffic should be sent to the printer or to a file. Be warned that certain syntax errors can
cause the compiler to prit many error messages for each and every line in the program.
A lot of paper could be used this way! Note that the /Q option disallows disk swapping,
even if the /S option is given.

Rd Route the JRL file to the specified disk 'd'. Choices are 'A' through 'W'. The default is
the same disk as filename.

Sd Route Scratch files to specified disk. This option is useful if you have a RAM disk or if
your disk does not have much free space. The use of this option also allows disk swapping
to load package specification (.SYM) files. Normally, after both the compiler and source
file disks are searched for .SYM tiles, an error is produced if they are not all found.
However, when the /S option is used, the compiler disk may be removed and replaced by
a disk to search. The linker has a similar option, which allows the development of large
programs on systems with a small disk capacity. Note that disk swapping is not enabled by
the /S option if the /Q (quiet option) is also given. The /Q option is intended for batch
mode compiles, and its purpose conflicts with the disk swapping. The main problem is that
when the /S option is used to put scratch files on a RAM disk, a batch file may stop
waiting for a missing .SYM or ERROR.MSG file; such behavior would not be appropriate
when /Q is specified.

T Generate information which allows trimming unused subprograms from the code. This
option tells the compiler to generate information which can be used by the remove
subprograms from the final code. This option increases the size of the JRL files produced.
We recommend that it be used on reusable libraries of code (like trig. libraries or stack
packages) - that is those compilations for which it is likely that some subprograms are not
called.

W Don't print any warning messages. For more control of warning messages, use the following
option form (Wx).

F.10

Copyright 1989, R.R. Sotware, Inc. Revision 4.6

Appendix F: Implementaion Dependencies

Wx Print only warnings of level less than the specified digit 'x'. The given value of x may be
from 1 to 9. The more wrnings you are willing to see, the higher the number you should
give.

X Handle eXtra symbol table information. This option is for the use of the JScope debugger
and other tools. This option requires large quantities of memory and disk space, and thus
should be avoided if possible.

Z Turn on optimization. This has the same effect as if the pragma OPTIMIZE were set to
SPACE throughout your compilation.

The default values for the command line options are:

B Error messages are verbose.
BS Statistics are verbose.
D Debug code is generated.
F Library calls are generated for floating point operations.
L No listing file is generated.
0 Memory model 0 is used.
Q The compiler prompts for abort after every error.
R The JRL file is put on the same disk as the input file.
S Scratch files are put on the same disk as the compiler.
T No trimming code is produced.
W All warnings are printed.
X Extra symbol table information is not generated.
Z Optimization is done only where so specified by pragmas.

Leading spaces are disregarded between the filename and the call to Compile. Spaces are otherwise
not recommended on the command line. The presence of blanks to separate the options or
between the filename and the extension will be ignored.

Examples:
Compile test/Q/L
Compile test. run/W4
Compile test
Compile test .run /B /W/L

The compiler produces a SYM (SYMbol table information) file when a specification is compiled,
and a SRL or JRL (Specification ReLocatable or Janus ReLocatable) file when a body is compiled.
To make an executable program, the appropriate SRL and JRL files must be linked (combined)
with the run-time libraries. This is accomplished by running the IntegrAda linker, Bind.

The IntegrAda linker is invoked using the following format:

Bind [d:] filename (/option)

Here "filename" is the name of the SRL or JRL file created when the main program was compiled
(without the .SRL or JRL extension) with optional disk name [d:], and compiler options {/option}.
The filename usually corresponds to the first eight letters of the name of your main program. A
disk may be specified where the files are to be found. See the linker manual for more
detailed directions. We summarize here, however, a few of the most commonly used iinking
options:

F-1I

Copyrilgt 1909, R.R. Softwre, In Revision 4.6

Appendix F: Implementation Dependencies

E Create an EXE file. This is assumed if the /01 option is given. This allows allow a slightly
larger total program size if memory model is used.

FO Use software floating point (the default).
F2 Use hardware (8087) floating point.
L Display lots of information about the loading process.
00 Use memory model 0 (the default); see the description of the /0 option in the compiler,

above.
01 Use memory model 1.
Q Use quiet error messages; i.e., don't wait for the user to interact after an error.
B Use brief statistics.
T Trim unused subprograms from the code. This option tells the linker to remove

subprograms which are never called from the final output file. This option reduces space
usage of the final file by as much as 30K.

Examples:
Bind test
Bind test /Q/L
Bind test/O1/L/F2

Note that if you do not have a hardware floating point chip, and if you are using memory model
0, then you generally will not need to use any linker options.

F-12

Copyright 1989, R.R. Software, It., Revision 4.6

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of these names before the test
is run. The values used for this validation are given below:

Name and Meaning Value

SACC.SIZE 16
An integer literal whose value is the
number of bits sufficient to hold any value
of an access type.

$BIG ID1 (l..199= >'A',200= >'1')
An identifier the size of the maximum input
line length which is identical to $BIGID2
except for the last character.

$BIG ID2 (1.. 199 = >'A',200 = >'2')
An identifier the size of the maximum input
line length which is identical to $BIGID1
except for the last character.

$BIGID3 (1..100= >'A',101 = >'3',102..200= >'A')
An identifier the size of the maximum input
line length which is identical to $BIGID4
except for a character near the middle.

$BIG ID4 (1..100=>'A',101=>'4',102..200=>'A')
An identifier the size of the maximum input
line length which is identical to $BIGID3
except for a character near the middle.

$BIGINTLIT (1.. 197 = >'O', 198..200 = >'298')
An integer literal of value 298 with enough
leading zeroes so that it is the size of the
maximum line length.

$BIG REAL-LIT (1..194 = > 'O',195..200= > '69.OE1')
A universal real literal of value 690.0 with
enough leading zeroes to be the size of the
maimum line length.

Vaidaim 3 , Repmt AVF-VSR-90502AI

R R Si m Im e. ahepi 42.0 Appendix C - Page I of 6

TEST PARAMETERS

$BIGSTRING1 ("1.100= >'A"')
A string literal which when catenated with
BIG STRING2 yields the image of
BIGID1.

$BIGSTRING2 ("1..99=>'A',100=>1.")
A string literal which when catenated to the
end of BIGSTRING1 yields the image of
BIGID1.

$BLANKS (1..180=>' ')
A sequence of blanks twenty characters less
than the size of the maximum line length.

$COUNTLAST 32_767
A universal integer literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 65536
An integer iteral whose value is
SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8
An integer literal whose value is
SYSTEM.STORAGEUNIT.

$DEFAULT SYS NAME MSDOS2
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC 2# 1.0#E-31
A real literal whose value is
SYSTEM.F.NEDELTA.

$FIELD LAST 32767
A universal integer literal whose value is
TEXT IO.FIELD'LAST.
DLAST>

$FIXED NAME NOTAPP!.ICABLE
The name of a predefined fixed-point type
other than DURATION.

Valuhdw " Smy RqPM AVF-VSR-90302/61

R R Saflina Inc. qlrWAd 42.0 Appendk C - Page 2of 6

TEST PARAMETERS

$FLOAT .NAME NOT-APPLICABLE
The name of a predefined floating-point
type other than FLOAT, SHORT-FLOAT,
or LONG-FLOAT.

$GREATERTHANDURATION 300 000.0
A universal real literal that lies between
DURATION'BASE'LAST and
DURATION'LAST or any value in the
range of DURATION.

$GREATER_THANDURATIONBASE 1.0E6
-LAST
A universal real literal that is greater than
DURATION'BASE'LAST.

$HIGHPRIORITY 0
An integer literal whose value is the upper
bound of the range for the subtype
SYSTEM.PRIORITY.

$ ILLEGAL EXTERNALFILENAME1 \NODIRECTORY\FILENAME
An external file name which contains invalid
characters.

$ILLEGALEXTERNAL FILE NAME2 <BAD^ >
An external file name which is too long.

$INTEGER FIRST -32768
A universal integer literal whose value is
INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal whose value is
INTEGER'LAST.

$INEGERLASTPLUS_1 32768
A universal integer literal whose value is
INTEGER'LAST + 1.

SLESS THAN-DURATION -305_000.0
A universal real literal that lies between
DURATION'BASE'FIRST and
DURATION'FIRST or any value in the
range DURATION.

vNU Su y Remt AVF-VSR-90502/1

R I fto I.. hrAd 42.0 Appmdt C - Pag 3 o(6

TEST PARAMETERS

$LESS THAN DURATION BASE FIRST -1.0E6
A universal real literal that is less than
DURATION'BASE'FIRST.

SLOWPRIORITY 0
An integer literal whose value is the lower
bound of the range for the subtype
SYSTEM.PRIORITY.

SMANTISSA DOC 31
An integer literal whose value is
SYSTEM.MAXMANTISSA.

$MAX DIGITS 15
Maximum digits supported for floating-point
types.

$MAXINLEN 200
Maximum input line length permitted by the
implementation.

$MAXTNT 2147483647
A universal integer literal whose value is
SYSTEM.MAX_TNT.

$MAX INTPLUS_1 2147483648
A universal integer literal whose value is
SYSTEM.MAXINT+1.

SMAX LENINTBASED LITERAL (1..2= >'2',3..197 >'',198..200 >'11:')
A universal integer based literal whose value
is 2#11# with enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXLENREALBASED LITERAL (1..3->'16:',4..196=>'O',197..200=>'F.E:')
A universal real based literal whose value
is 16:F.E: with enough leading zeroes in the
mantissa to be MAXIN LEN long.

SMAX STRING LITERAL (1 = >'"',2.. 199=> 'A',200 =
A string literal of size MAXINLEN,
including the quote characters.

SMININT -2147483648
A universal integer literal whose value is
SYSTEM.MIN INT.

Vabllm SOmmY R m AVF-VSR-90502/61

R R Saftwm la. INpM. 4.2.0 Appendix C - Page 4 of 6

TEST PARAMETERS

$MIN TASK SIZE 16
An integer literal whose value is the
number of bits required to hold a task
object which has no entries, no declarations,
and "NULL;" as the only statement in its
body.

$NAME NOTAPPLICABLE
A name of a predefined numeric type other
than FLOAT, INTEGER, SHORTFLOAT,
SHORT INTEGER, LONGFLOAT, or
LONGINTEGER.

$NAME LIST MS_DOS2
A list of enumeration literals in the type
SYSTEM.NAME, separated by commas.

$NEG BASED INT 16#FFFFFFFF#
A based integer literal whose highest order
nonzero bit falls in the sign bit position of
the representation for SYSTEM.MAXINT.

SNEW MEMSIZE 65536
An integer literal whose value is a permitted
argument for pragma MEMORY-SIZE,
other than $DEFAULTMEM SIZE. If
there is no other value, then use
$DEFAULTMEM.SIZE.

$NEW.STORUNIT 8
An integer literal whose value is a permitted
argument for pragma STORAGEUNIT,
other than $DEFAULTSTORUNIT. If
there is no other permitted value, then use
value of SYSTEM.STORAGEUNIT.

$NEW SYS NAME MSDOS2
A value of the type SYSTEM.NAME, other
than SDEFAULTSYSNAME. If there
is only one value of that type, then use that
value.

$TASKSIZE 16
An integer literal whose value is the
number of bits required to hold a task
object which has a single entry with one 'IN
OUT' parameter.

VRa ep amm ,y m AVF-VSR-90502161

R R Sab h. bIftrAd 420 Appeodi C - Pap 5 of 6

TEST PARAMErERS

$TICK
00A real literal whose value is 00

SYSTEM.TICK

VAflhhtm. &SMY Rqaut
AVF-VSR-90502*1

R R 3at IN - b IuaeFAif 42A
APPendk C - Pope 6 of 6

WITHDRAWN TESTS

APPENDIX D

WIITHRAN TET

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following 44 tests had been withdrawn at the time of validation testing for the reasons
indicated. A reference of the form AI-ddddd is to an Ada Commentary.
E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear

at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

B97102E This test contains an unitended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING OF THE GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AI-00256, the illegality need not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object's size be no greater than 10 although
its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

CD2B15C & CD7205C

VAIM 14 3 Repm AVF-VSR-9OZO'l

R R Soft mi. lugrAd 420 Appeod D - Pae I f 2

WITHDRAWN TESTS

These tests expect that a 'STORAGESIZE length clause provides precise control
over the number of designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

CD5007B This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 testsl
These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task's activation as though it were like the specification of storage
for a collection.

CE21071 This test requires that objects of two similar scalar types be distinguished when read
from a file--DATAERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus, this test objective is not considered valid. (line
90)

CE3111C This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

CE3301A This test contains several calls to END OF LINE & END OF PAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARD-INPUT (fines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be set to COUNT'LAST in order
to check that LAYOUT ERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

vW 9i-7 Rq m AVF-WSR-90=O

R R Som Ia WAr, 4.20 Appeoft D - Pae 2 of 2

NCC VSR ADDENDUM

This Addendum to the ACVC 1.10 VSR clarifies some items which are contained within the
standard pro-forma Validation Summary Report as supplied by the Ada Maintenance Organisation
(AMO).

In line with AJPO regulations the contents of the VSR have not been altered in order to keep
consistency between the different AVF's.

The points raised in this addendum are being addressed by the AMO in future issued of the VSR.

1 The last paragraph of Chapter 1 contains the following statement 'Any test that was
determined to contain an illegal language constructed or an erroneous language construct
is withdrawn from the ACVC...'

This is incorrect since illegal constructs are legitimately contained within Class B tests.

2 Both the terms 'inapplicable' and 'not applicable' are used within the VSR. These terms
are identical.

3 Chapter 1 of the VSR does not indicate how 'inapplicable' tests are to be analysed. The
analysis is undertaken as follows:

'Each inapplicable test is checked to ensure that this behaviour is consistent with the given
reasons for its inapplicability'.

